Welcome to DeepClassifier’s documentation!

DeepClassifier is a python package based on pytorch, which is easy-use and general for text classification task.🤩

QuickStart

I will show you that how to install DeepClassifier.🤩

installation

`python pip install -u deepclassifier `

Models

I will show you that the pramamters of models.🤩

TextCNN model

I will show you that the pramamters of textcnn.🤩

Initialization

class TextCNN(nn.Module):

def __init__(self,embedding_dim,dropout_rate,

num_class,vocab_size=0,seq_length=0, num_layers=3,kernel_sizes=[3, 4, 5], strides=[1, 1, 1],paddings=[0, 0, 0], num_filters=[100, 100, 100], embedding_matrix=None, requires_grads=False):

In default,the way to initialize embedding is loading pretrained embedding look-up table!

param embedding_dim

embedding dim

param dropout_rate

drouput rate

param num_class

the number of label

param vocab_size

vocabulary size

param seq_length

max length of sequence after padding

param num_layers

the number of cnn

param kernel_sizes

list of conv kernel size

param strides

list of conv strides

param paddings

list of padding

param num_filters

list of num filters

param embedding_matrix

pretrained embedding look-up table,shape is:[vocab_size,embedding_dim]

param requires_grads

whether to update gradient of embedding in training

Indices and tables